Sensorex

Description interface logiciel/ Software interface description

High performance MEMS Inclinometer / Accelerometer

690 040 xxx

Présentation

Les produits SX40xxx possèdent un bus de communication série RS485 et une connexion USB.

Via ces bus numériques, le logiciel App641488 permet principalement de :

- Acquérir et afficher en temps réel des informations issues du SX40xxx connecté à la liaison RS485 ou la liaison USB.
- Enregistrer les acquisitions dans un fichier,
- Configurer certains paramètres du produit (bande passante, baud rate, ...)

La liaison RS485 répond au protocole MODBUS RTU et la connexion USB 2.0 (full-speed) répond à une interface HID standard « plug & play » défini dans la norme Device Class Definition for Human Interface Devices (HID) v1.11). Les jeux de commandes MODBUS RTU <u>bas niveaux</u> disponibles sont définis dans ce document.

Concernant la connexion USB, un câble USB ref 90507537 est disponible à l'achat chez MEGGITT SENSOREX pour connecter facilement votre PC ou votre hôte USB au produit sx40xxx.

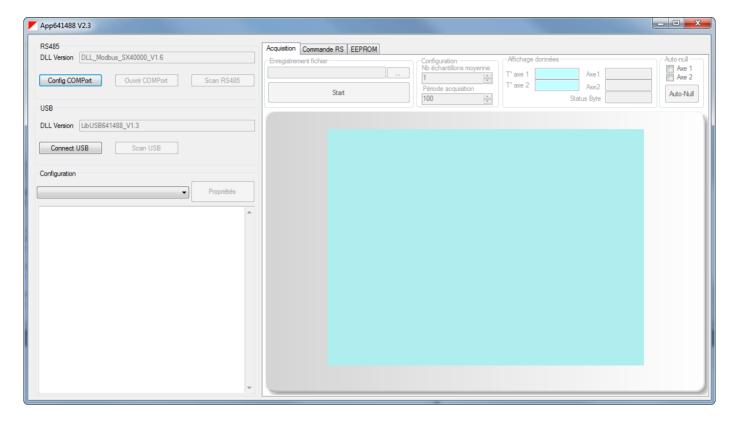
Dans ce document sont aussi décrites les adresses RAM et EEPROM du produit accessible par l'utilisateur final.

Logiciel App641488

Installation :

Il est fortement préconisé d'installer cette application sur un PC disposant du système d'exploitation <u>windows SEVEN au minima</u>.

Pour un système 32bit, installer le fichier setup Setup_SX40000_w7_x86.exe


Pour un système 64bit, installer le fichier setup Setup_SX40000_w7_x64.exe

Présentation :

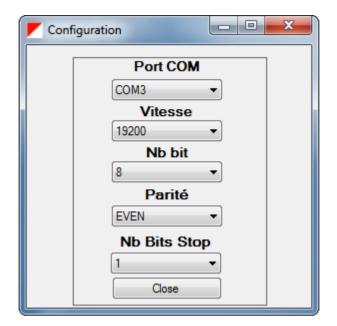
L'IHM est séparée en deux parties.

La partie gauche étant dédiée à la configuration d'accès au produit SX40000 et la partie droite est dédiée à l'affichage et l'enregistrement des données lues du produit.

Configuration d'accès :

Avant de pouvoir accéder au produit SX40000, l'utilisateur doit indiquer sur quel type de bus est connecté le produit SX40000.

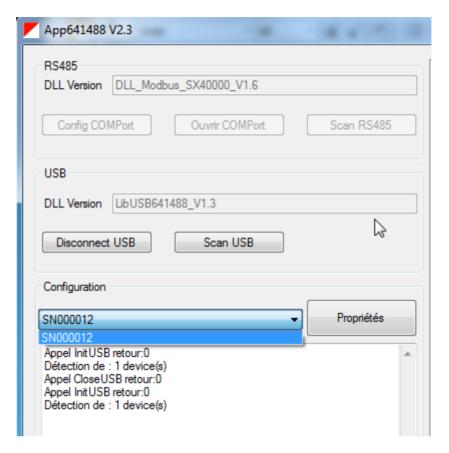
Si le SX40000 est connecté via un bus RS485, l'utilisateur doit d'abord configurer le port de communication utilisé.


Il faut pour cela cliquer sur le bouton « Config COMPort ».

Dans la fenêtre, l'utilisateur doit alors paramétrer :

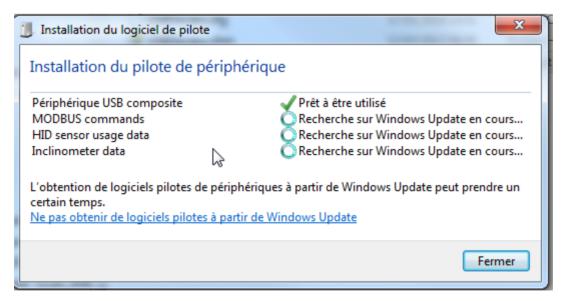
- · Le numéro de port utilisé
- · La vitesse de transmission
- Le nombre de bit (8 pour le SX40000)
- La parité (paire pour le SX40000)
- Le nombre de bit de stop (1 pour le SX40000)

Après avoir cliqué sur « Close », le bouton « Ouvrir COMPort » est accessible.


Détection des SX40000

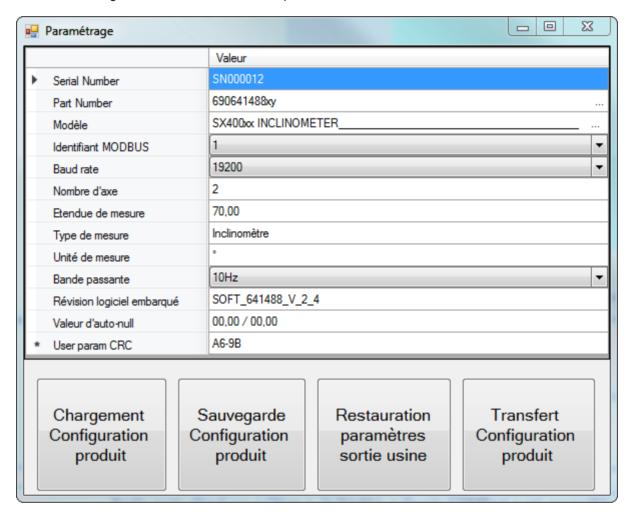
Cliquer sur le bouton « Ouvrir COMPort » pour pouvoir accéder au bouton « Scan RS485 », ou sur le bouton « Connect USB » pour pouvoir accéder au bouton « Scan USB » suivant le mode de connexion de votre produit.

Avant de pouvoir accéder au produit SX40000 il est nécessaire de détecter au moins un produit SX40000 connecté sur le port sélectionné. Pour cela l'utilisateur doit cliquer sur le bouton « Scan RS485 » ou « Scan USB ». L'opération de scan sur le bus RS485 est interruptible par l'utilisateur.


Après détection d'un produit SX40000, celui-ci est accessible via le menu-déroulant dans la partie « Configuration ».

NOTE IMPORTANTE:

<u>Uniquement à la première connexion</u> du produit sur un port USB d'un nouveau PC, avant d'appuyer sur « scan USB », patienter jusqu'à la fin de la détection du produit par le PC (les 4 interfaces doivent être identifiés « prêt à être utilisé »).



Configuration du SX40000

L'utilisateur peut configurer certain paramètres du SX40000 via le bouton « Propriétés ».

Les paramètres de configuration et d'identification du produit s'affichent dans la fenêtre suivante :

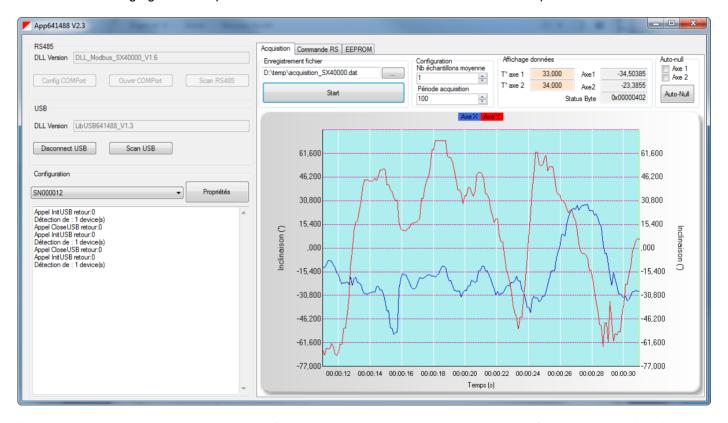
L'utilisateur peut configurer :

- L'identifiant MODBUS (de 1 à 247)
- Le baud rate sur le port RS485
- La bande passante du ou des axes du SX40000

Après avoir sélectionné les paramètres désirés, cliquer sur « Transfert Configuration Produit » pour appliquer les choix de l'utilisateur.

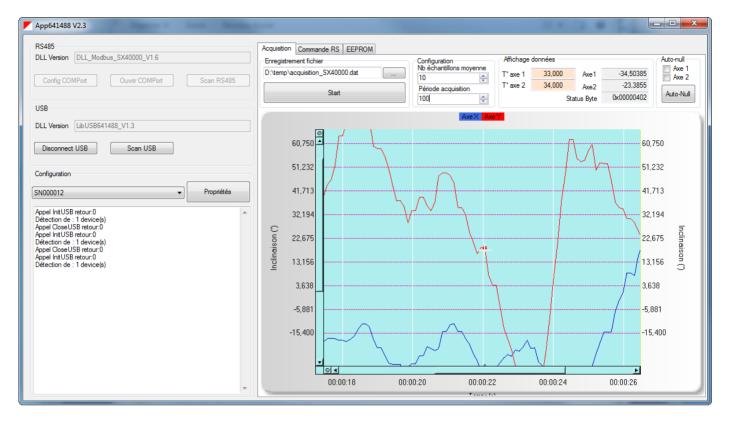
Un clic sur le bouton « Restauration paramètres sortie usine » restaure la configuration du produit à la livraison.

Les boutons « Chargement Configuration produit » et « Sauvegarde Configuration produit » permette à l'utilisateur de maintenir la configuration du produit dans un fichier.


Affichage des données du SX40000

Dans la partie droite de l'IHM se trouve toutes les informations renvoyées par le produit SX40000.

Les informations de température, d'angle ou d'accélération moyenne ainsi que les informations de statut du SX40000 sont affichées et remise à jour cycliquement.


Dans la partie « Affichage données » se trouve les valeurs de température en °C ainsi que les valeurs moyennes d'angles. La moyenne de chaque angle/accélération est calculée sur les N dernières valeurs affichées. N est égal à la valeur contenue dans la case « Nb échantillons moyenne ».

La fenêtre d'affichage glissante représente au maximum les 20 dernières secondes d'acquisition.

Il est possible de zoomer sur le graphique afin de mieux visualiser les courbes puis de déplacer les axes X et Y.

Enregistrement des données

Si l'utilisateur désire enregistrer les données en provenance du produit SX40000, il est possible de spécifier un fichier d'enregistrement.

La période d'acquisition des données est prise à partir de la valeur contenue dans la case « Période acquisition ». Cette valeur est donnée en ms.

Le fichier d'acquisition contiendra:

- Un compteur sur 1 octet
- La valeur de l'axe 1 et son unité
- La valeur de l'axe 2 et son unité
- La température de l'axe 1 en °C
- La température de l'axe 2 en °C
- Le statut du SX40000
- La datation de réception l'échantillon en ms

Remise à zéro du/des axes

L'application App641488 permet de faire une auto-calibration du zéro à une inclinaison donnée de l'inclinomètre/accéléromètre de manière permanente même après un re-démarrage du produit.

Procédure (recommandée) d'auto-calibration du zéro (ou de l'offset) :

Filtrer au maximum le bruit du capteur en réglant la bande passante du produit à Fc=0.2Hz (par ex),

- Positionner le produit aux inclinaisons d'auto-zéro voulue,
- · Lancer une acquisition du capteur,
- Attendre la stabilisation du capteur au minimum 5x1/Fc soit environ 30secondes @Fc=0.2Hz.
- Réaliser l'auto-zéro du capteur :
 - Choisir le/les axe(s) d'auto-zéro en cochant la/les cases « Axe 1 » et/ou « Axe 2 »,
 - Cliquer sur le bouton « Auto-Null »

Procédure de suppression de l'auto-calibration du zéro :

Pour restaurer les paramètres d'auto-null vierge du SX40000 avant la remise à zéro des axes,

- Cliquer sur le bouton « Propriétés » puis « restauration paramètres sorties d'usine ».
- IMPORTANT, afin de ne pas perdre votre configuration, juste après avoir cliqué sur « restauration paramètre usine », ne surtout pas débrancher votre SX40xxxx mais remettre à jours, toujours sous « propriétés », votre identifiant ID MODBUS, votre baud rate et votre bande passante désirée puis cliquer « Transfert Configuration Produit ».

Note: Les onglets "Commande RS" et "EEPROM" sont réservés à une utilisation interne MSS

Accès aux données dynamiques et statiques

Différentes données dynamiques (RAM) et paramètres statiques (EEPROM) sont accessibles à l'utilisateur via les interfaces RS485 (MODBUS) ou USB (HID class).

Si l'utilisateur désire communiquer avec le produit, sans utiliser l'application PC, vous trouverez ci-dessous le descriptif des commandes bas niveaux MODBUS ou USB permettant de le réaliser.

Interface RS485 (MODBUS)

La liste des commandes MODBUS disponibles sont les suivantes :

Accès paramètres statiques :

- Lecture des paramètres statiques (EEPROM) : Read holding register
- Ecritures des paramètres statiques (EEPROM) : Write multiple register

Accès données dynamiques :

- Lecture des données dynamiques (RAM) : Read input register
- Lecture buffer FIFO des 15 dernières mesures accélération/inclinaison : Read FIFO queue

Commandes utilitaires:

- Commande Reset produit : Microcontroller reset
- Commande Auto-null : Autonull
- Commande Restauration paramètres usine : Restore Factory settings

Le détail de ces commandes est fourni en annexe 1.

Interface USB (HID class)

Les commandes USB bas niveaux correspondent à celles décrite dans le standard USB « Dev Device Class Definition for Human Interface Devices (HID) Firmware Specification—6/27/01 Version 1.11 » et plus spécifiquement :

- Get report request (lecture)
- Set report request (écriture)

Le produit dispose de 2 principales interfaces USB type HID :

- L'interface 0 (MODBUS commands)
- L'interface 1 (inclinometer data)

La lecture/écriture des données de chaque interface peut uniquement être réalisé en utilisant des requêtes de contrôle (SETUP control transfer).

Note: Le logiciel App641488 utilise seulement l'interface 0 pour communiquer avec le produit. Cette interface émule un format de requête/réponse identique au protocole applicatif MODBUS RTU sur le bus RS485. Elle permet de lire ou écrire différents données dynamiques ou paramètres statiques via leur adresse respective fournie dans ce document.

Bibliothèque des données

La liste des paramètres statiques disponibles est décrite en annexe 2.

La liste des données dynamiques disponibles est décrite en annexe 3.

Annexe 1: Description des commandes MODBUS RTU

L'ensemble des commandes MODBUS RTU utilisées par le produit sont décrites ci-dessous.

<u>Note</u>: Toutes les données utiles sont transmises MSB en tête. C'est-à-dire que le mot de 32 bits suivant 0x01020304 sera transmis dans l'ordre suivant:

0x01	0x02	0x03	0x04	
			<u> </u>	

Commande Read holding registers

Cette commande sert à lire des données/paramètres statiques (EEPROM) contenues dans le produit.

Format de la requête:

Commande	Adresse départ	Qté de registre	CRC
0x03	2 octets	2 octets	2 octets

Champ	Description	
Adresse départ	Adresse EEPROM à lire (alignée sur 32bits)	
Qté de registre	Nombre de registre à lire multiple de 2 obligatoirement.	

Format de la réponse en cas de succès:

Commande	Nb octet	Valeurs registres	CRC
0x03	1 octet	(Qté de registre) * 2 octets	2 octets

Champ	Description
Nb octet	Nombre d'octet du champ « Valeurs registres». Est égal à 2 * « Qté de registre »
Valeurs registres	Valeur des registres EEPROM.

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x83	1 octet	2 octets

Champ	Description
Code d'erreur	0x01, 0x02, 0x03 ou 0x04

Les codes d'erreurs sont donnés par la norme MODBUS RTU et ils ont les significations suivantes:

Code d'erreur	Signification	Description
0x01	Illegal function	Code commande inconnu
0x02	Illegal data address	Adresse non valide
0x03	Illegal data value	Données non valide
0x04	Server device failure	Erreur durant l'exécution de la commande

Commande Read input registers

Cette commande sert à lire des données RAM contenue dans le produit. Les adresses disponibles sont décrites au chapitre 0.

Format de la requête:

Commande	Adresse départ	Qté de registre	CRC
0x04	2 octets	2 octets	2 octets

Champ	Description	
Adresse départ	Adresse RAM à lire (alignée sur 32bits)	
Qté de registre	Nombre de registre à lire multiple de 2 obligatoirement.	

Format de la réponse en cas de succès:

Commande	Nb octet	Valeurs registres	CRC
0x04	1 octet	(Qté de registres) * 2 octets	2 octets

Champ	Description
Nb octet	Nombre d'octet du champ « Valeurs registres». Est égal à 2 * « Qté de registre »
Valeurs registres	Valeur des registres RAM.

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x84	1 octet	2 octets

Champ	Description	
Code d'erreur	0x01, 0x02, 0x03 ou 0x04	

Commande Write multiple registers

Cette commande sert à écrire des données EEPROM dans le produit. Les adresses disponibles sont décrites au chapitre 0.

Format de la requête:

Commande	Adresse départ	Qté de registre	Nb octet	Données	CRC
0x10	2 octets	2 octets	1 octet	Qté de registre	2 octets
				* 2 octets	

Champ	Description	
Adresse départ	Adresse EEPROM à écrire (alignée sur 32bits)	
Qté de registre	Nombre de registre à écrire multiple de 2 obligatoirement. Ce champ doit être compris entre 2 et 122.	
Nb octet	Egal à 2 * « Qty of register»	
Données	Valeur à écrire en EEPROM.	

Format de la réponse en cas de succès:

Commande Adresse départ		Qté de registre	CRC
0x10	2 octets	2 octets	2 octets

Champ	Description	
Adresse départ	Adresse EEPROM écrite (alignée sur 32bits)	
Qté de registre	Nombre de registre écrit.	

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x90	1 octet	2 octets

Champ	Description
Code d'erreur	0x01, 0x02, 0x03 ou 0x04

Commande Read FIFO queue

Cette commande sert à lire des données FIFO contenues dans le produit. Ces données constituent les N dernières mesures de l'inclinomètre/accéléromètre à la fréquence de 1KHz. Le type de donnée (=axe voulue) est sélectionnable via l'adresse passée en paramètre. Les données renvoyées sont toutes de type flottant 32 bits.

Format de la requête:

Commande	Adresse de la FIFO	CRC
0x18	2 octets	2 octets

Champ	Description	
Adresse de la FIFO	Adresse permettant de sélectionner le type de donnée renvoyée :	
	0x2B00* (15 x last 32bit-float pitch tilt/acceleration data),	
	0x2C00* (15 x last 32bit-float roll tilt/acceleration data),	

Format de la réponse en cas de succès:

Commande	Nb octet	Nb registre FIFO	Valeur registre FIFO	CRC
0x18	2 octets	2 octets	« FIFO count » * 2 octets	2 octets

Champ	Description	
Nb octet Nombre d'octet		
Nb registre FIFO Nombre de registre 16bits contenu dans le champ « Valeur registre FIF		
Valeur registre FIFO	Valeur lues de type flottant 32 bits.	

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x98	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x02

Commande microcontroller reset

Cette commande permet de rebooter le produit sans avoir à faire un cycle Power Off / Power On.

Le produit émet une réponse avant de redémarrer. Le produit est inaccessible pendant sa période de redémarrage.

Format de la requête:

Commande	CRC
0x41	2 octets

Format de la réponse en cas de succès:

Commande	CRC
0x41	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xC1	1 octet	2 octets

Champ	Description
Code d'erreur	0x01

Commande Autonull

Cette commande permet d'ajouter un offset permanent à un capteur. Cette commande est réversible par l'envoi de la commande *Restore Factory Settings*. L'offset sera égal à la valeur du capteur au moment où le produit recevra la requête.

Format de la requête:

Commande	Numéro capteur	CRC
0x44	1 octet	2 octets

Champ	Description
Numéro capteur	1: axe 1 (tangage)2: axe 2 (roulis)

Format de la réponse en cas de succès:

Commande	CRC
0x44	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xC4	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x03

Commande Restore Factory Settings

Cette commande permet de remettre les valeurs de l'EEPROM de la partie utilisateur aux valeurs sortie d'usine.

Format de la requête:

Commande	Clé	CRC
0x46	8 octets	2 octets

Champ	Description
Clé	Ce champ doit être égal à :
	• 0xFF00FF00FF00

Format de la réponse en cas de succès:

Commande	CRC
0x46	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xC6	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x03

Calcul du CRC16 MODBUS RTU

La norme MODBUS RTU inclus une vérification d'erreur basée sur la méthode *Cyclical Redundancy Checking (CRC)* appliquée sur les données du message.

Le champ CRC permet de vérifier l'ensemble des données du message. Il est calculé sans prendre en compte les bits de parité de chaque octet du message.

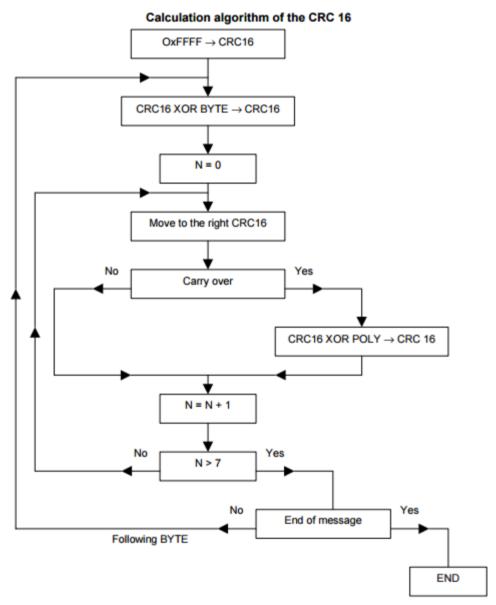
Le champ CRC contient un mot de 16bits implémenté comme deux éléments de 8bits. Le CRC 16bits est ajouté à la fin du message. L'octet de poids faible du CRC 16 bits est d'abord ajouté au message suivi de l'octet de poids fort. L'octet de poids fort du message est donc le dernier octet transmis du message. Le CRC 16 bits est calculé par l'émetteur du message Le récepteur recalcule le CRC 16 bits du message reçu et le compare à la valeur contenue dans le message reçu. Si les deux valeurs ne sont pas identiques, une erreur est levée.

Calcul du CRC

Le calcul du CRC est démarré en chargeant un registre 16 bits à 0xffff.

Ensuite, un processus démarre en appliquant successivement chaque octet du message à la valeur courante du registre. Seulement les 8 bits des données sont utilisées pour générer le CRC. Les bits de start, de stop et de parité ne sont pas appliqués au calcul du CRC.

Pendant la génération du CRC, on exécute un OU exclusif entre chaque octet du message et le contenu du registre de CRC. Ensuite le résultat est décalé vers la droite et le bit de poids fort est mis à 0. Le LSB est alors examiné. Si il est égal à 1, alors on applique un OU exclusif entre le registre du CRC et une valeur prédéfinie. Si le LSB est égal à 0, on ne fait rien.


Ce processus est répété jusqu'à ce que 8 décalages aient été effectués. Après les 8 décalages, on applique un OU exclusif sur le prochain octet avec le contenu du registre du CRC et le processus se continue pour 8 nouveau décalage comme décrit ci-dessus.

Le contenu final du registre, est la valeur du CRC 16 bits.

La procédure de génération du CRC 16 bits est la suivante:

- 1. Charger un registre 16-bit avec 0xFFFF. Ce registre est le registre CRC.
- 2. Appliquer un OU exclusive sur le premier octet du message avec l'octet de poids faible du *registre CRC*, et mettre le résultat dans le *registre CRC*.
- Décaler le registre CRC à droite d'un bit et mettre un zéro dans le Most Significant Bit. Extraire et examiner le LSB.
- (Si le LSB est égal à 0): Répéter l'étape 3 (autre décalage).
 (Si le LSB est égal à 1): Appliquer un OU exclusive entre le registre CRC et la valeur 0xA001 (1010 0000 0000 0001)
- 5. Répéter les étapes 3 et 4 jusqu'à ce que 8 décalages aient été effectués.
- 6. Répéter les étapes 2 à 5 pour le prochain octet du message et ce jusqu'à la fin du message.
- 7. Le contenu du registre CRC est la valeur du CRC 16 bits.
- 8. L'octet de poids faible du CRC 16bits est placé en premier dans le message et ensuite, l'octet de poids fort est inséré.

XOR = exclusive or

N = number of information bits

POLY = calculation polynomial of the CRC 16 = 1010 0000 0000 0001

(Generating polynomial = $1 + x^2 + x + 15 + x + 16$) In the CRC 16, the 1st byte transmitted is the least significant one.

Annexe 2 : Définition des adresses RAM

Nom	Description	Adresse MODBUS (adresse RAM)	Туре	Plage de mesures	Unité
FinalDigitalFormatOutput Axis1	Sortie finale d'accélération ou d'inclinaison axe X	0x1004	Flottant 32bit (IEEE- 754)	[SortieMin, SortieMax]***	° / rad / g
TemperatureAxis1	Température du capteur axe X	0x1088	Mot 16 bit signé	[-351 ; +736] (⇔ [-40°C; +85°C])	LSB
FinalDigitalFormatOutput Axis2	Sortie finale d'accélération ou d'inclinaison axe Y	0x1104	Flottant 32bit (IEEE- 754)	[SortieMin, SortieMax]***	° / rad /g
TemperatureAxis2	Température du capteur axe Y	0x1188	Mot 16 bit signé	[-351 ; +736] (⇔ [-40°C; +85°C])	LSB
SystemError	Statut d'erreurs de l'inclinomètre (voir description tableau 1)	0x1200	Mot de 24bits	/	LSB
UserParamCrc	Checksum données « User parameters bank » (cf DCI [AD6])	0x0910	Mot 16 bit non signé	/	LSB
ProductParamCrc	Checksum données « default product parameters bank » (cf DCI [AD6])	0x0920	Mot 16 bit non signé	/	LSB
CalibrationParamCrc	Checksum données « calibration parameters bank » (cf DCI [AD6])	0x0930	Mot 16 bit non signé	/	LSB
EepromRevision	Version majeure du fichiers de configuration compatibles	0x0800	ASCII (8bits) x 17	/	LSB
SoftwareRevision	Version du logiciel embarqué	0x0820	ASCII (8bits) x 17	1	LSB

<u>Descriptif du mot 32bit statut du produit (SystemError):</u> Par défaut,

Numéro de bit	Désignation	Description
0	WdtFault	défaut débordement watchdog (=1)
1	BitOut	défaut général capteur (=1, au moins un bit xxxxFault est levée)
2	SysFault	défaut système (oscillator, UART en défaut, défaut écriture eeprom en flash,
		défaut communication bus SPI)
3	Sbit	Startup Built In Test en cours (=1)
4	OverTemp	Dépassement température de fonctionnement (=1)
5	CalibMode	mode usine (=1)
6	EepromUserFault	CRC de la zone EEPROM utilisateur non conforme ou au moins une
		donnée de la zone hors tolérances (=1)
7	EepromProductFault	CRC de la zone EEPROM produit non conforme ou au moins une donnée
		de la zone hors tolérances (=1)
8	EepromCalibFault	CRC de la zone EEPROM produit non conforme ou au moins une donnée
		de la zone hors tolérances (=1)
9	TriAxisSbitFault	défaut start-up capteurs internes (=1)
10	Axis1SensorSbitFault	défaut start-up capteur principale axe tangage (=1)
11	Axis1AnalogSbitFault	défaut start-up sortie analogique axe tangage (=1)
12	Axis1OverRange	capteur principale axe tangage hors tolérances (=1)
13	Axis1FilterFault	Filtre numérique capteur principale axe tangage instable (=1)
14	Axis1Autonull	Autonull capteur principale axe tangage activé (=1)
15	Axis1Uncalibrated	capteur principale axe tangage non calibré (=1)
16	Axis2SensorSbitFault	défaut start-up capteur principale axe roulis (=1)
17	Axis2AnalogSbitFault	défaut start-up sortie analogique axe roulis (=1)
18	Axis1OverRange	capteur principale axe roulis hors tolérances (=1)
19	Axis1FilterFault	Filtre numérique capteur principale axe roulis instable (=1)
20	Axis2Autonull	Autonull capteur principale axe roulis activé (=1)
21	Axis2Uncalibrated	capteur principale axe roulis non calibré (=1)

Tableau 1: Définition des bits de statut

Annexe 3 : Définition des adresses EEPROM

Name	Definition	Range	Structure	Size	Default value	Units	(0xXXXX) EEPROM address (0x1D07XXXX)
	EEPROM data (User	parameter ba	nk)				
UserParamCrc	Current bank checksum for data bank integrity checking purpose	/	16bit-word	1	1	LSB	0xB000
AutonullConfAxis1User	bias offset for inclinometer axis 1 autonull function with unit depend on TiltOutputUnitAxis1 data	/	32bit-float	1	0.0	g / ° / rad	0xB004
FilterCoeffEnAxis1User	Axis 1 accelero digital low-pass filters coefficients for input samples defined by respectively Filter 1 (order O1= FilterOrderAxis1User): { FilterCoeffEnAxis1User [0], FilterCoeffEnAxis1User [1], FilterCoeffEnAxis1User [2],, FilterCoeffEnAxis1User [N=O1]} With N=0: coefficient for En N=1: coefficient for En-1 N=2: coefficient for En-2 N=O1: coefficient for En-O1 (FilterCoeffEnAxis1User [x]) values are detailed in "Digital low-pass filter design" paragraph in [AD3])	/	64bit-float tab	N=7	/	/	0xB00C + (n x 8)h
FilterCoeffSnAxis1User	Axis 1 accelero digital low-pass	/	64bit-float	N=7	/	LSB	0xB044 +

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur. Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant Export Control Regulations.

Name	Definition	Range	Structure	Size	Default value	Units	(0xXXXX) EEPROM address (0x1D07XXXX)
	filters coefficients for ouput samples defined by respectively Filter 1 (order O1= FilterOrderAxis1User): { FilterCoeffSnAxis1User [0], FilterCoeffSnAxis1User [1], FilterCoeffSnAxis1User [2],, FilterCoeffSnAxis1User [N=O1]} With N=0: coefficient for Sn N=1: coefficient for Sn-1 N=2: coefficient for Sn-2 N=O1: coefficient for Sn-O1 (FilterCoeffSnAxis1User [x] values are detailed in "Digital low-pass filter design" paragraph in [AD3])		tab				(n x 8)h
FilterResonanceAxis1User	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of inclinometer axis 1	/	64bit-float	1	1	LSB	0xB07C
FilterBandwidthAxis1User	Digital filter bandwidth @-3dB of inclinometer axis 1	≤ 10	32bit-float	1	/	LSB	0xB084
FilterOrderAxis1User	Digital filter order of inclinometer axis 1	≤ 6 and ≥ 0 (=0 means no filtering)	32bit-word	1	/	LSB	0xB088

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document and the subject to Export Control Regulations of the European Union, USA or other countries.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevan Export Control Regulations.

Name	Definition	Range	Structure	Size	Default value	Units	(0xXXXX) EEPROM address (0x1D07XXXX)
AnalogSbitChoiceAxis1User	Factory default of analog output monitoring SBIT functionality choice of inclinometer axis 1 (=0 means disable)	[0; 1]	32bit-word	1	0	LSB	0xB08C
SensorSbitAxis1User	SCA103T SBIT enable/disable choice. (in order to be possible to obtain less than 1 second start-up time when SCA103T SBIT is disable)	[0; 1]	32bit-word	1	0	LSB	0xB090
AutonullConfAxis2User	bias offset for inclinometer axis 2 autonull function with unit depend on TiltOutputUnitAxis2 data	/	32bit-float	1	0.0	g / ° / rad	0xB094
FilterCoeffEnAxis2User	Axis 2 accelero digital low-pass filters coefficients for input samples defined by respectively Filter (order O1= FilterOrderAxis2User): { FilterCoeffEnAxis2User [0], FilterCoeffEnAxis2User [1], FilterCoeffEnAxis2User [2],, FilterCoeffEnAxis2User [N=O1]} With N=0: coefficient for En N=1: coefficient for En-1 N=2: coefficient for En-2 N=O1: coefficient for En-O1 (FilterCoeffEnAxis2User [x] values are detailed in "Digital"	/	64bit-float tab	N=7	/	/	0xB09C + (n x 8)h

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur. Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all releva Export Control Regulations.

Name	Definition	Range	Structure	Size	Default value	Units	(0xXXXX) EEPROM address (0x1D07XXXX)
	low-pass filter design" paragraph in [AD3])						
FilterCoeffSnAxis2User	Axis 2 accelero digital low-pass filters coefficients for ouput samples defined by respectively Filter (order O1= FilterOrderAxis2User): { FilterCoeffSnAxis2User [0], FilterCoeffSnAxis2User [1], FilterCoeffSnAxis2User [2],, FilterCoeffSnAxis2User [N=O1]} With N=0: coefficient for Sn N=1: coefficient for Sn-1 N=2: coefficient for Sn-2 N=O1: coefficient for Sn-O1 (FilterCoeffSnAxis2User [x] values are detailed in "Digital low-pass filter design" paragraph in [AD3])	/	64bit-float tab	N=7	/	LSB	0xB0D4 + (n x 8)h
FilterResonanceAxis2User	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of inclinometer axis 2	/	64bit-float	1	/	LSB	0xB10C
FilterBandwidthAxis2User	Digital filter bandwidth @-3dB of inclinometer axis 2	≤ 10	32bit-float	1	/	LSB	0xB114
FilterOrderAxis2User	Digital filter order of inclinometer axis 2	≤ 6 and	32bit-word	1	1	LSB	0xB118

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document and the subject to Export Control Regulations of the European Union, USA or other countries.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevan Export Control Regulations.

Name	Definition	Range	Structure	Size	Default value	Units	(0xXXXX) EEPROM address (0x1D07XXXX)
		≥ 0 (=0 means no filtering)					
AnalogSbitChoiceAxis2User	Factory default of analog output monitoring SBIT functionality choice of inclinometer axis 2 (=0 means disable)	[0; 1]	32bit-word	1	0	LSB	0xB11C
SensorSbitAxis2User	SCA103T SBIT enable/disable choice. (in order to be possible to obtain less than 1 second start-up time when SCA103T SBIT is disable)	[0; 1]	32bit-word	1	0	LSB	0xB120
Rs485BaudRateUser	UART baud rate selection	[19200; 115000]	32bit-word	1	19200	baud	0xB140
Rs485IdentifierUser	UART MODBUS identifier	[1;246]	Byte	1	1	LSB	0xB144
	EEPROM data (Default product o	onfiguration p	parameter ban	k)			
ConfFile Version	Configuration file version (major and minor version)	/	Character (byte) tab	24	/	LSB	0xC1A0
SxPartNumber	Part number (690641490vv) with version(=vv).	/	Character (byte) tab	12	690641488xy	LSB	0xC1C0
ProductDefinition	Brief description including range and unit	/	Character (byte) tab	60	641488 INCLINOMETER +/-90°	LSB	0xC1E0
WiredCiPartNumber	Part number of wired integrated circuit (490432xxx) without version	/	Character (byte) tab	12	490432xxx	LSB	0xC220
	EEPROM data (Specific	calibration pa)			
SerialNumber	Serial number '(SNxxxxxx)	/	UNICODE characters	8	SNxxxxxx	LSB	0xD004

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur. Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevan Export Control Regulations.

Name	Definition	Range	Structure	Size	Default value	Units	(0xXXXX) EEPROM address (0x1D07XXXX)
			(16bit- word) tab				
ManufacturingDate	Date of manufacturing "ddmmyyyy" (dd=day, mm=month, yyyy=year	/	Character (byte) tab	12	xx/xx/xxxx	LSB	0xD014
CalibrationDate	Last calibration date "ddmmyyyy" (dd=day, mm=month, yyyy=year	/	Character (byte) tab	12	xx/xx/xxxx	LSB	0xD024
WiredCiSerialNumber	Wired PCB serial number (SNxxxxxxx)	/	Character (byte) tab	12	SNxxxxxxx	LSB	0xD034

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur. Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document any be subject to Export Control Regulations of the European Union, USA or other countries.

Filtrage des capteurs

Chaque capteur accélérométriques et gyrométriques peut être filtré indépendamment des autres. Pour cela l'utilisateur doit calculer des coefficients de filtrage. Le filtrage numérique effectué par le produit est de la forme suivante:

$$S_n = A_n E_n + A_{n-1} E_{n-1} + ... + A_0 E_0 - (B_{n-1} S_{n-1} + B_{n-2} S_{n-2} + ... + B_0 S_0)$$

Le produit supporte des filtres dont la fréquence de coupure est inférieure à 10Hz. Lors du calcul des coefficients de filtrage, il faudra prendre en compte la fréquence d'échantillonnage des capteurs à 1kHz.

- Après avoir calculé les coefficients de filtrage, l'utilisateur doit mettre à jour les valeurs suivantes en EEPROM:

 FilterCoeffEnXXXXXUser[]: coefficients de filtrage de la partie En. L'indice 0 du tableau est le coefficient du
 - terme En, l'indice 1 du terme En-1, ... etc.

 FilterCoeffSnXXXXXUser[]: coefficients de filtrage de la partie Sn. L'indice 0 du tableau est le coefficient du terme
 - Sn, l'indice 1 du terme Sn-1, ... etc.
 - FilterBandwidthXXXXXUser: Fréquence de coupure du filtre en Hz. Doit être inférieure ou égale à 200Hz.
 - FilterOrderXXXXXUser: Ordre du filtre. Doit être inférieur ou égal à 6.

Note: XXXXX représente le capteur dont on veut changer la fréquence de coupure. Il est donc égal à GyroX, ou GyroY, ou GyroZ, ou AcceleroX ou AcceleroZ.