Sensorex

Description interface produit

IMU & référence dynamique de verticale

690 043 045 690 043 046

1. Généralités

Les produits SX4304x possèdent un bus RS485. Il répond au protocole MODBUS RTU. Ils possèdent également un bus CAN 2.0B.

Dans ce document sont décrites les différentes commandes auxquelles le produit répond, ainsi que les adresses RAM et EEPROM dont l'utilisateur final a accès.

Il s'agit d'une description des commandes bas niveau des produits SX4304x.

2. Paramètres et données utilisateur

Différentes possibilités de paramétrage sont fournies à l'utilisateur final. Par exemple, le produit permet un filtrage des données accélérométriques et gyrométriques. Il permet également de paramétrer, le baud rate, l'identifiant MODBUS, ainsi que le bus CAN.

Il est également possible d'interroger le produit sur son statut et de récupérer les valeurs de chaque capteur qui sont disponible en RAM.

Paramètres FFPROM

Les paramètres EEPROM sont décrits exhaustivement au §6.

Paramètres MODBUS

Le produit possède les paramètres suivant :

- Rs485BaudRateUser: Baud rate. Doit avoir une des valeurs suivantes: 9600, 19200, 38400, 115200, 230400, 460800 ou 921600. Valeur par défaut : 19200 baud
- Rs485IdentifierUser: Identifiant MODBUS. Doit être compris entre 1 et 247. Valeur par défaut : 1
- Rs485FramePeriodUser: Période d'envoi de la trame mode continu. La trame mode continue est décrite au §03. Il s'agit d'un minimum. C'est-à-dire que si la durée d'émission de la trame mode continue est supérieure à cette valeur, alors le produit émettra continuellement des données sur le bus.
- MasterModeUser: Ce champ permet de sélectionner le mode du produit. Si la valeur de ce champ est égale à 0, le produit est en mode esclave. Il n'émet des données que si on lui envoi une commande. Si ce champ est égal à 1, le produit passe en mode maître. Il émet alors la trame mode continue décrite au §3. Ce champ ne rentre pas en compte dans le calcul du CRC de l'EEPROM.

Paramètres bus CAN

Le produit possède les paramètres suivant :

- CANBaudRateUser: Baud rate du bus CAN. Doit avoir une des valeurs suivantes: 125000, 250000, 500000, 1000000.
- CANFramePeriodUser: Période d'envoi des trames CAN. Doit être compris entre 1 et 1000ms.
- CANCmdIdentifierUser : Identifiant de la commande permettant de sélectionner les données envoyées par le
- CANData1IdentifierUser: Identifiant de la trame CAN Data 1. Identifiant étendu sur 29bits.
- CANData2IdentifierUser: Identifiant de la trame CAN Data 2. Identifiant étendu sur 29bits.
- CANData3IdentifierUser: Identifiant de la trame CAN Data 3. Identifiant étendu sur 29bits.
- CanMasterModeUser: Ce champ permet de sélectionner le mode d'émission des trames CAN au démarrage du produit. La valeur de ce champ est représentative de la valeur du champ SEL TX de la trame de commande

Filtrage des capteurs

Chaque capteur accélérométriques et gyrométriques peut être filtré indépendamment des autres. Pour cela l'utilisateur doit calculer des coefficients de filtrage. Le filtrage numérique effectué par le produit est de la forme suivante:

$$S_n = A_n E_n + A_{n-1} E_{n-1} + ... + A_0 E_0 - (B_{n-1} S_{n-1} + B_{n-2} S_{n-2} + ... + B_0 S_0)$$

Le produit supporte des filtres dont la fréquence de coupure est inférieure à 200Hz. Lors du calcul des coefficients de filtrage, il faudra prendre en compte la fréquence d'échantillonnage des capteurs à 1kHz.

Après avoir calculé les coefficients de filtrage, l'utilisateur doit mettre à jour les valeurs suivantes en EEPROM:

- FilterCoeffEnXXXXXUser[]: coefficients de filtrage de la partie En. L'indice 0 du tableau est le coefficient du terme En, l'indice 1 du terme En-1, ... etc.
- FilterCoeffSnXXXXXUser[]: coefficients de filtrage de la partie Sn. L'indice 0 du tableau est le coefficient du terme Sn, l'indice 1 du terme Sn-1, ... etc.
- FilterBandwidthXXXXXUser: Fréquence de coupure du filtre en Hz. Doit être inférieure ou égale à 200Hz.
- FilterOrderXXXXXUser: Ordre du filtre. Doit être inférieur ou égal à 6.

<u>Note:</u> XXXXX représente le capteur dont on veut changer la fréquence de coupure. Il est donc égal à GyroX, ou GyroY, ou GyroZ, ou AcceleroX ou AcceleroY ou AcceleroZ.

Données utilisateur

L'utilisateur peut accéder aux valeurs décrites dans le tableau §5 via une commande de lecture RAM décrite au §3 (Commande Read Input Register).

Les valeurs accessibles sont de différents types :

- Valeur des capteurs filtrés: Ces valeurs sont en unités représentative du capteur lu (g pour les accéléromètres, °/s pour les gyromètres, ° pour les angles de roulis et tangage)
- Température interne des capteurs: Valeur en °C de la température interne de chaque capteur
- Numéro de série des capteurs : Permet la traçabilité des capteurs
- Statut du produit : Ensemble de bit indiquant l'état de chaque capteur. Ce champ est décrit en détail ci-dessous.
- Révision logicielle : Version du logiciel embarqué dans le produit

Statut du produit :

Le statut du produit (champ *SystemErrors* dans le tableau du §5) est un ensemble de bits dont la signification est la suivante:

Numéro de bit	Désignation	Description	
0	BitOut	0 : Aucun défaut	
		1 : un bit xxxxFault est positionné	
1	Sbit	0 : Startup Built In Test terminé	
		1 : Startup Built In Test en court	
2	OverTemp	0 : Température dans le range [MIN ;MAX]	
		1 : Température hors range [MIN ;MAX]	
3	CalibMode	0 : mode utilisateur	
		1 : mode calibration	
4	OverRange	0 : Les valeurs des capteurs sont dans leur range respectif	
		1 : Au moins 1 capteur est hors range. Le capteur hors range es	
		indiqué par un bit xxxEvent égal à 1.	
5	Autonull	 0 : Les capteurs n'ont pas de valeurs autonull postionnées 	
		1 : Au moins 1 capteur à une valeur autonull différente de 0. Le	
		capteur est indiqué par un bit xxxEvent égal à 1.	
6	Uncalibrated	0 : Tous les capteurs sont calibrés	
		1 : Au moins 1 capteur n'est pas calibré. Le capteur non calibré est	

		indiqué par un bit xxxEvent égal à 1.	
7	KalmanFilterOverRange	0 : Angle roulis et tangage dans le range	
		 1 : Angle roulis ou tangage hors range ([-90/+90]°) 	
8	AcceleroXEvent	0 : Aucun évènement sur l'accéléromètre axe X détecté	
		• 1 : Le capteur accéléromètre axe X possède un évènement	
		(FilterFault, over-range, non calibré ou défaut SBIT ou CBIT) ou	
		SysFault est positionné	
9	AcceleroYEvent	0 : Aucun évènement sur l'accéléromètre axe Y détecté	
		 1 : Le capteur accéléromètre axe Y possède un évènement 	
		(FilterFault, over-range, non calibré ou défaut SBIT ou CBIT) ou	
		SysFault est positionné	
10	AcceleroZEvent	0 : Aucun évènement sur l'accéléromètre axe Z détecté	
		1: Le capteur accéléromètre axe Z possède un évènement	
		(FilterFault, over-range, non calibré ou défaut SBIT ou CBIT) ou	
44	O. ma V.F. vant	SysFault est positionné	
11	GyroXEvent	0 : Aucun évènement sur gyromètre axe X détecté	
		1 : Le capteur gyromètre axe X possède un évènement (FilterFault, over range, non calibré ou défaut SPIT ou CPIT) ou Sysfault est	
		over-range, non calibré ou défaut SBIT ou CBIT) ou SysFault est positionné	
12	GyroYEvent	0 : Aucun évènement sur gyromètre axe Y détecté	
12	SylorEvent	 1 : Le capteur gyromètre axe Y possède un évènement (FilterFault, 	
		over-range, non calibré ou défaut SBIT ou CBIT) ou SysFault est	
		positionné	
13	GyroZEvent	0 : Aucun évènement sur gyromètre axe Z détecté	
		1 : Le capteur gyromètre axe Z possède un évènement (FilterFault,	
		over-range, non calibré ou défaut SBIT ou CBIT) ou SysFault est	
		positionné	
14	inutilisé		
15	BitFault	0 : Résultat du SBIT et CBIT OK	
		1 : Résultat du SBIT ou CBIT KO	
16	SysFault	0 : Aucun défaut	
		1 : System fault (oscillator, UART en défaut, défaut écriture eeprom	
47		en flash, défaut communication bus SPI)	
17	EepromUserFault	0 : CRC de la zone EEPROM utilisateur conforme	
		1 : CRC de la zone EEPROM utilisateur non conforme ou une	
10	For your Droduct Foult	donnée au moins hors range	
18	EepromProductFault	0 : CRC de la zone EEPROM produit conforme	
		1 : CRC de la zone EEPROM produit non conforme ou une donnée au maine here range.	
19	EepromCalibFault	 au moins hors range 0 : CRC de la zone EEPROM calibration conforme 	
18	LepioniCalibrauit	1 : CRC de la zone EEPROM calibration conforme 1 : CRC de la zone EEPROM calibration non conforme ou une	
		donnée au moins hors range	
20	WdtFault	0 : 0K	
	Wati dait	1 : Défault du watchdog du micro-controleur	
21	FilterFault	0 : filtres stables	
	o aan	 1 : Au moins 1 filtre instable. Le filtre instable est indiqué par un bit 	
		xxxEvent égal à 1.	
	<u> </u>		

Tableau 1: Définition des bits de statut

MEGGiTT

NOTICE D'INSTRUCTION / INSTRUCTION MANUAL NOT043045InterfaceProductB0

3. Description des commandes MODBUS RTU

L'ensemble des commandes MODBUS RTU utilisées par le produit sont décrites ci-dessous.

<u>Note</u>: Toutes les données utiles sont transmises MSB en tête. C'est-à-dire que le mot de 32 bits suivant 0x01020304 sera transmis dans l'ordre suivant:

0x01	0x02	0x03	0x04

Dans le cas d'une modification d'une valeur de l'EEPROM, l'utilisateur devra remettre à jour le CRC de la zone.

Le calcul du CRC de la zone se fait sur les valeurs contenues de l'adresse 0x0004 à l'adresse 0x063F.

Le calcul de ce CRC est identique au calcul du CRC 16 bit de la norme MODBUS RTU. Ce calcul est décrit en annexe de ce document §7.

Le résultat doit être stocké dans l'EEEPROM à l'adresse 0x0000.

Commande Read holding registers

Cette commande sert à lire des données EEPROM contenues dans le produit. Les adresses disponibles sont décrites au §6.

Format de la requête:

Commande	Adresse départ	Qté de registre	CRC
0x03	2 octets	2 octets	2 octets

Champ	Description
Adresse départ	Adresse EEPROM à lire (alignée sur 32bits)
Qté de registre	Nombre de registre à lire. Doit être paire.

Format de la réponse en cas de succès:

Commande	Nb octet	Valeurs registres	CRC
0x03	1 octet	(Qté de registre) * 2 octets	2 octets

Champ	Description
-------	-------------

Nb octet	Nombre d'octet du champ « Valeurs registres». Est égal à 2 * « Qté de registre »
Valeurs registres	Valeur des registres EEPROM. Est transmis MSB first.

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x83	1 octet	2 octets

Champ	Description
Code d'erreur	0x01, 0x02, 0x03 ou 0x04

Les codes d'erreurs sont donnés par la norme MODBUS RTU et ils ont les significations suivantes:

Code d'erreur	Signification	Description
0x01	Illegal function	Code commande inconnu
0x02	Illegal data address	Adresse non valide
0x03	Illegal data value	Données non valide
0x04	Server device failure	Erreur durant l'exécution de la commande

Commande Read input registers

Cette commande sert à lire des données RAM contenue dans le produit. Les adresses disponibles sont décrites au chapitre 5.

Format de la requête:

Commande	Adresse départ	Qté de registre	CRC
0x04	2 octets	2 octets	2 octets

Champ	Description
Adresse départ	Adresse RAM à lire (alignée sur 32bits)
Qté de registre	Nombre de registre à lire. Doit être pair.

Format de la réponse en cas de succès:

Commande	Nb octet	Valeurs registres	CRC
0x04	1 octet	(Qté de registres) * 2 octets	2 octets

Champ	Description
Nb octet	Nombre d'octet du champ « Valeurs registres». Est égal à 2 * « Qté de registre »
Valeurs registres	Valeur des registres RAM. Est transmis MSB first.

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x84	1 octet	2 octets

Champ	Description
Code d'erreur	0x01, 0x02, 0x03 ou 0x04

Commande Write multiple registers

Cette commande sert à écrire des données EEPROM dans le produit. Les adresses disponibles sont décrites au chapitre 5

Format de la requête:

Commande	Adresse départ	Qté de registre	Nb octet	Données	CRC
0x10	2 octets	2 octets	1 octet	Qté de registre * 2 octets	2 octets

Champ	Description
Adresse départ	Adresse EEPROM à écrire (alignée sur 32bits)
Qté de registre	Nombre de registre à écrire. Doit être paire. Ce champ doit être compris entre 2 et 122.

Nb octet	Egal à 2 * « Qty of register»
Données	Valeur à écrire en EEPROM. Les données sont transmises MSB first.

Format de la réponse en cas de succès:

Commande	Adresse départ	Qté de registre	CRC
0x10	2 octets	2 octets	2 octets

Champ	Description
Adresse départ	Adresse EEPROM écrite (alignée sur 32bits)
Qté de registre	Nombre de registre écrit.

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x90	1 octet	2 octets

Champ	Description
Code d'erreur	0x01, 0x02, 0x03 ou 0x04

Commande Read FIFO queue

Cette commande sert à lire des données FIFO contenues dans le produit. Ces données constituent les N derniers échantillons calculés pour les capteurs gyromètres et accéléromètres. Les données de roulis, tangage sont également disponibles via cette commande. Le type de donnée est sélectionnable via l'adresse passée en paramètre. Les données renvoyées sont toutes de type flottant 32 bits. Chaque échantillon est acquis par le produit à la fréquence de 1kHz.

Format de la requête:

Commande	Adresse de la FIFO	CRC
0x18	2 octets	2 octets

Champ	Description
-------	-------------

Adresse de la FIFO	Adresse permettant de sélectionner le type de donnée renvoyée :	
	0x0000 (15 x last 32bit-float gyromètre X compensated data),	
	0x0040 (15 x last 32bit-float gyromètre Y compensated data),	
	0x0080 (15 x last 32bit-float gyromètre Z compensated data),	
	0x00C0 (15 x last 32bit-float accéléromètre X compensated data),	
	0x0100 (15 x last 32bit-float accéléromètre Y compensated data),	
	0x0140 (15 x last 32bit-float accéléromètre Z compensated data),	
	0x2B00* (15 x last 32bit-float pitch tilt data),	
	0x2C00* (15 x last 32bit-float roll tilt data),	

Format de la réponse en cas de succès:

Commande	Nb octet	Nb registre FIFO	Valeur registre FIFO	CRC
0x18	2 octets	2 octets	« FIFO count » * 2 octets	2 octets

Champ	Description
Nb octet	Nombre d'octet
Nb registre FIFO	Nombre de registre 16bits contenu dans le champ « Valeur registre FIFO»
Valeur registre FIFO	Valeur lues. Les données sont transmises MSB first et sont toutes de type flottant 32 bits.

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0x98	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x02

Commande microcontroller reset

Cette commande permet de rebooter le produit sans avoir à faire un cycle Power Off / Power On.

Le produit émet une réponse avant de redémarrer. Le produit est inaccessible pendant sa période de redémarrage.

Format de la requête:

Commande	CRC
0x41	2 octets

Format de la réponse en cas de succès:

Commande	CRC
0x41	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xC1	1 octet	2 octets

Champ	Description
Code d'erreur	0x01

Commande Autonull

Cette commande permet d'ajouter un offset permanent à un capteur. Cette commande est réversible par l'envoi de la commande *Restore Factory Settings*. L'offset sera égal à la valeur du capteur au moment où le produit recevra la requête.

Format de la requête:

Commande	Numéro capteur	CRC
0x44	1 octet	2 octets

Champ	Description
Numéro capteur	1: gyromètre X
	2: gyromètre Y
	3: gyromètre Z
	4: accéléromètre X
	5: accéléromètre Y
	6: accéléromètre Z

Format de la réponse en cas de succès:

Commande	CRC
0x44	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xC4	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x03

Commande Restore Factory Settings

Cette commande permet de remettre les valeurs de l'EEPROM de la partie utilisateur aux valeurs sortie d'usine.

Format de la requête:

Commande	Clé	CRC
0x46	8 octets	2 octets

Champ	Description
Clé	Ce champ doit être égal à :
	• 0xFF00FF00FF00

Format de la réponse en cas de succès:

Commande	CRC
0x46	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xC6	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x03

Commande Continuous Frame Output

Cette commande passe le produit en mode maitre sur le bus RS485. Le produit émet alors continuellement une trame décrite ci-dessous. La période d'émission de cette trame peut être paramétrée avec la donnée EEPROM « Rs485FramePeriodUser ».

Format de la requête:

Commande	CRC
0x66	2 octets

Format de la réponse en cas de succès:

Commande	CRC
0x66	2 octets

Format de la réponse en cas d'échec:

Commande	Code d'erreur	CRC
0xE6	1 octet	2 octets

Champ	Description
Code d'erreur	0x01 ou 0x03

La trame mode continu est décrite ci-dessous. Elle a une taille de 46 octets. Les données sont toutes transmises MSB first.

Octet	Designation	Description
0-1	Synchro	Mot 16 bit de synchro. Egal à 0x7F7F
2-3	Compteur	Compteur de trame (from 0 to 65535 modulo 65535)
4-7	Gx	Valeur gyromètre axe X en °/s (flottant IEEE754 32bits)
8-11	Gy	Valeur gyromètre axe Y en °/s (flottant IEEE754 32bits)
12-15	Gz	Valeur gyromètre axe Z en °/s (flottant IEEE754 32bits)
16-19	Ax	Valeur accéléromètre axe X en g (flottant IEEE754 32bits)
20-23	Ау	Valeur accéléromètre axe Y en g (flottant IEEE754 32bits)
24-27	Az	Valeur accéléromètre axe Z en g (flottant IEEE754 32bits)
28-31	Tangage	Angle de tangage en ° (flottant IEEE754 32bits)
32-35	Roulis	Angle de roulis en ° (flottant IEEE754 32bits)
36-39	Température	Température en °C (flottant IEEE754 32bits)

40-43	System Error	Statut du produit. Pour plus de détails se reporter au Tableau 1.
44-45	CRC	CRC 16 de type MODBUS

Tableau 2: Description trame mode continu

4. Protocole CAN

Il s'agit d'un protocole spécifique.

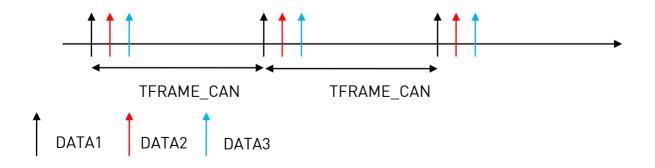
Le capteur émet, à une période TFRAME_CAN prédéterminée et configurable en EEPROM par l'utilisateur (minimum 1ms), les informations sélectionnées, après réception de la commande adéquate.

Le débit sera configurable entre 125kbauds et 1Mbauds, à l'aide d'un registre en EEPROM.

Détails du protocole :

Le capteur envoie les données ou stoppe l'émission après réception de la commande « contrôleur vers capteur ».

Commande contrôleur vers capteur :


ı	Identifiant / (4 octets)	Commande (1 octet)	Données (1 octet)
	0x1FFFD8B0	0x01	SEL_TX (voir tableau ci-dessous

SEL_TX	Contenu de la trame de réponse
0x00	Arrêter émission des données (aucune donnée)
0x01	DATA1 seulement
0x02	DATA2 seulement
0x03	DATA1 et DATA2
0x04	DATA3 seulement
0x05	DATA1 et DATA3
0x06	DATA2 et DATA3
0x07	toutes les données (DATA1, DATA2, DATA3)

Réponses de l'IMU vers contrôleur:

Il existe donc 3 types de données renvoyés par le capteur définis par 3 identifiants différents.

Si plusieurs type de données doivent être envoyés (selon la valeur de SEL_TX), alors ces types de données sont envoyées toutes les (TFRAME_CAN) ms, selon la priorité suivante DATA1 puis DATA2 puis DATA3 (voir chronogramme ci-dessous) :

Les données sont transmises 'MSB first'.

DATA1:

Identifiant (4 octets)	Données (6 octets)		
0x10FF53D8	TA (2 octets)	RA (2 octets)	STATUS (2 octets)

Donnée	Signification	Plage physique	Plage numérique	Format
ТА	Angle de tangage [°]	[-90°; 90°]	[-32768 ; 32767]	Entier signé 16 bits
RA	Angle de roulis [°]	[-90°; 90°]	[-32768 ; 32767]	Entier signé 16 bits
STATUS	Mots d'états (16bits de poids faible du mot d'état décrit au Tableau 1)	N/A	Pour chaque bit: 0: ok 1: défaut	2 octets

DATA 2:

Identifiant (4 octets)	Données (8 octets)			
0x10FF54D8	ACCX (2 octets)	ACCY (2 octets)	ACCZ (2 octets)	STATUS (2 octets)

Donnée	Signification	Plage physique	Plage numérique	Format
ACCX	Accélération X [g]	[-PE_ACCEL ; + PE_ACCEL] (note 1) [-32768 ; 32767]		Entier signé 16 bits
ACCY	Accélération Y [g]	[-PE_ACCEL ; + PE_ACCEL] (note 1)	[-32768 ; 32767]	Entier signé 16 bits
ACCZ	Accélération Z [g]	[-PE_ACCEL ; + PE_ACCEL] (note 1)	[-32768 ; 32767]	Entier signé 16 bits
STATUS	Mots d'états (16bits de poids faible du mot d'état décrit au Tableau 1)	N/A	Pour chaque bit: 0: ok 1: défaut	2 octets

Note 1: PE_ACCEL: 2,5g ou 10g, suivant la configuration de l'IMU

DATA 3:

Identifiant (4 octets)	Données (8 octets)			
0x10FF55D8	GYRX (2 octets)	GYRY (2 octets)	GYRZ (2 octets)	STATUS (2 octets)

Donnée	Signification	Plage physique	Plage numérique	Format
GYRX	Vitesse angulaire X [°/s]	[-300 ; +300]	[-32768 ; 32767]	Entier signé 16 bits
GYRY	Vitesse angulaire Y [°/s]	[-300 ; +300]	[-32768 ; 32767]	Entier signé 16 bits
GYRZ	Vitesse angulaire Z [°/s]	[-300 ; +300]	[-32768 ; 32767]	Entier signé 16 bits
STATUS	Mots d'états (16bits de poids faible du mot d'état décrit au Tableau 1)	N/A	Pour chaque bit: 0: ok 1: défaut	2 octets

5. Définition adresse RAM

Nom	Adresse	Туре	Taille (octet)	Unité
Valeur gyromètre axe X	0x1000	Flottant 32bit	4	°/s
Température gyromètre axe X	0x1010	Flottant 32bit	4	°C
Numéro de série capteur gyromètre axe X	0x1104	Mot 32 bits	8	/
Valeur gyromètre axe Y	0x2000	Flottant 32bit	4	°/s
Température gyromètre axe Y	0x2010	Flottant 32bit	4	°C
Numéro de série capteur gyromètre axe Y	0x2104	Mot 32 bits	8	/
Valeur gyromètre axe Z	0x3000	Flottant 32bit	4	°/s
Température gyromètre axe Z	0x3010	Flottant 32bit	4	°C
Numéro de série capteur gyromètre axe Z	0x3104	Mot 32 bits	8	/
Valeur accéléromètre axe X	0x4000	Flottant 32bit	4	g
Température accéléromètre axe X	0x4010	Flottant 32bit	4	°C
Numéro de série capteur accéléromètre axe X	0x4104	Mot 32 bits	8	/
Valeur accéléromètre axe Y	0x5000	Flottant 32bit	4	g
Température accéléromètre axe Y	0x5010	Flottant 32bit	4	°C
Numéro de série capteur accéléromètre axe Y	0x5104	Mot 32 bits	8	/
Valeur accéléromètre axe Z	0x6000	Flottant 32bit	4	g
Température accéléromètre axe Z	0x6010	Flottant 32bit	4	°C
Numéro de série capteur accéléromètre axe Z	0x6104	Mot 32 bits	8	/
Angle tangage	0x0958	Flottant 32bit	4	0
Angle roulis	0x095C	Flottant 32bit	4	٥

Nom	Adresse	Туре	Taille (octet)	Unité
Commande sortie DAC 1	0x7300	Mot 32 bit signé	4	LSB
Commande sortie DAC 2	0x7400	Mot 32 bit signé	4	LSB
System status (voir Tableau 1 pour plus de détail)	0x8000	Mot de 24bits	4	LSB
CRC16 EEPROM zone utilisateur calculé	0x0910	Mot 16 bit non signé	2	LSB
Données trame mode continue (voir Tableau 2 pour plus de détail)	0x0940	N/A	46	1
Révision majeure EEPROM compatible	0x0800	ASCII (8bits)	22	LSB
Version logicielle embarquée	0x0820	ASCII (8bits)	22	LSB

NOT043045InterfaceProductB0

6. Définition adresse EEPROM:

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
UserParamCrc	Current bank checksum for data bank integrity checking purpose	1	16bit-word	1	1	LSB	0x0000
		Gyro X					
AutonullGyroXUser	bias offset for gyrometer X autonull function	1	32bit-float	1	0.0	°/s	0x0008
FilterCoeffEnGyroXUser	gyrometer X digital low-pass filters coefficients for input samples defined by respectively						
	Filter 1 (order O1= FilterOrderGyroXUser):						
	{FilterCoeffEnGyroXUser [0],						
	FilterCoeffEnGyroXUser [1],						
	FilterCoeffEnGyroXUser [2],, FilterCoeffEnGyroXUser [N=O1]}	1	64bit-float	7	1	1	0x0010
	With		table				
	N=0 : coefficient for En						
	N=1 : coefficient for En-1						
	N=2 : coefficient for En-2						
	N=O1 : coefficient for En-O1						
FilterCoeffSnGyroXUser[]	Gyrometer X digital low-pass filters coefficients for output samples defined by	1	64bit-float	7	1	LSB	0x0048

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant Export Control Regulations.

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	respectively		table				
	Filter 1 (order O1= FilterOrderGyroXUser):						
	{ FilterCoeffSnGyroXUser [0],						
	FilterCoeffSnGyroXUser [1],						
	FilterCoeffSnGyroXUser [2],, FilterCoeffSnGyroXUser [N=O1]}						
	With						
	N=0 : coefficient for Sn						
	N=1 : coefficient for Sn-1						
	N=2 : coefficient for Sn-2						
	N=O1 : coefficient for Sn-O1						
FilterResonanceGyroXUser	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of gyrometer X	1	64bit-float	1	1	LSB	0x0080
FilterBandwidthGyroXUser	User digital filter bandwidth @-3dB of gyrometer X	≤ 200	32bit-float	1	1	LSB	0x0088
FilterOrderGyroXUser	Digital filter order of gyrometer X	≤ 6					
		and	32bit-word	1	,	LSB	0x008C
		≥ 0	32DIL-WOIG	'	,	LOD	UXUUOC
		(=0 means no filtering)					
		Gyro Y					

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur. Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document any be subject to Export Control Regulations of the European Union, USA or other countries.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all releval Export Control Regulations.

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address	
AutonullGyroYUser	bias offset for gyrometer Y autonull function	1	32bit-float	1	0.0	°/s	0x0108	
FilterCoeffEnGyroYUser[]	gyrometer Y digital low-pass filters coefficients for input samples defined by respectively				7 /			
	Filter 1 (order O1= FilterOrderGyroYUser):							
	{ FilterCoeffEnGyroYUser [0],							
	FilterCoeffEnGyroYUser [1],		64bit-float table	7				
	FilterCoeffEnGyroYUser [2],, FilterCoeffEnGyroYUser [N=O1]}	1				/	0x0110	
	With			table				
	N=0 : coefficient for En							
	N=1 : coefficient for En-1							
	N=2 : coefficient for En-2							
	N=O1 : coefficient for En-O1							
FilterCoeffSnGyroYUser	Gyrometer Y digital low-pass filters coefficients for ouput samples defined by respectively		64bit-float				0x0148	
	Filter 1 (order O1= FilterOrderGyroYUser):	/	table	7	/	LSB	5.0.1.5	
	{ FilterCoeffSnGyroYUser [0],		lable	lable	lable			
	FilterCoeffSnGyroYUser [1],							

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	FilterCoeffSnGyroYUser [2],, FilterCoeffSnGyroYUser [N=O1]} With N=0 : coefficient for Sn N=1 : coefficient for Sn-1						
	N=2 : coefficient for Sn-2 N=O1 : coefficient for Sn-O1						
FilterResonanceGyroYUser	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of gyrometer Y	/	64bit-float	1	1	LSB	0x0180
FilterBandwidthGyroYUser	User digital filter bandwidth @-3dB of gyrometer Y	≤ 200	32bit-float	1	1	LSB	0x0188
FilterOrderGyroYUser	Digital filter order of gyrometer Y	≤ 6 and ≥ 0 (=0 means no filtering)	32bit-word	1	1	LSB	0x018C
		Gyro Z					
AutonullGyroZUser	bias offset for gyrometer Z autonull function	1	32bit-float	1	0.0	°/s	0x0208
FilterCoeffEnGyroZUser[]	gyrometer Z digital low-pass filters coefficients for input samples defined by respectively	1	64bit-float table	7	1	1	0x0210

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	Filter 1 (order O1= FilterOrderGyroZUser): { FilterCoeffEnGyroZUser [0], FilterCoeffEnGyroZUser [1], FilterCoeffEnGyroZUser [2],, FilterCoeffEnGyroZUser [N=O1]} With N=0: coefficient for En N=1: coefficient for En-1 N=2: coefficient for En-2 N=O1: coefficient for En-O1						
FilterCoeffSnGyroZUser[]	Gyrometer Z digital low-pass filters coefficients for ouput samples defined by respectively Filter 1 (order O1= FilterOrderGyroZUser): { FilterCoeffSnGyroZUser [0], FilterCoeffSnGyroZUser [1], FilterCoeffSnGyroZUser [2],, FilterCoeffSnGyroZUser [N=O1]} With N=0: coefficient for Sn	1	64bit-float tab	7	/	LSB	0x0248

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	N=1 : coefficient for Sn-1						
	N=2 : coefficient for Sn-2						
	N=O1 : coefficient for Sn-O1						
FilterResonanceGyroZUser	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of gyrometer Z	I	64bit-float	1	1	LSB	0x0280
FilterBandwidthGyroZUser	User digital filter bandwidth @-3dB of gyrometer Z	≤ 200	32bit-float	1	1	LSB	0x0288
FilterOrderGyroZUser	Digital filter order of gyrometer Z	≤ 6					
		and	32bit-word	1	1	LSB	0x028C
		≥ 0	32bit-Word	'	,	LOD	0.0200
		(=0 means no filtering)					
		Accelero X		T		T	
AutonullAcceleroXUser	bias offset for accelerometer X autonull function	1	32bit-float	1	0.0	g	0x0308
FilterCoeffEnAcceleroXUser[]	Accelerometer X digital low-pass filters coefficients for input samples defined by respectively		64bit-float	_			0x0310
	Filter 1 (order O1= FilterOrderAcceleroXUser):		table	7	7 /	/	
	{ FilterCoeffEnAcceleroXUser [0],						

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	FilterCoeffEnAcceleroXUser [1], FilterCoeffEnAcceleroXUser [2],, FilterCoeffEnAcceleroXUser [N=O1]} With N=0: coefficient for En N=1: coefficient for En-1 N=2: coefficient for En-2 N=O1: coefficient for En-O1						
FilterCoeffSnAcceleroXUser[]	Accelerometer X digital low-pass filters coefficients for ouput samples defined by respectively Filter 1 (order O1= FilterOrderAcceleroXUser): { FilterCoeffSnAcceleroXUser [0], FilterCoeffSnAcceleroXUser [1], FilterCoeffSnAcceleroXUser [2],, FilterCoeffSnAcceleroXUser [N=O1]} With N=0: coefficient for Sn N=1: coefficient for Sn-1	1	64bit-float table	7	/	LSB	0x0348

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant

- 26 -

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	N=2 : coefficient for Sn-2 N=O1 : coefficient for Sn-O1						
FilterResonanceAcceleroXUser	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of accelerometer X	I	64bit-float	1	1	LSB	0x0380
FilterBandwidthAcceleroXUser	User digital filter bandwidth @-3dB of accelerometer X	≤ 200	32bit-float	1	1	LSB	0x0388
FilterOrderAcceleroXUser	Digital filter order of accelerometer X	≤ 6 and ≥ 0 (=0 means no filtering)	32bit-word	1	I	LSB	0x038C
		Accelero Y					
AutonullAcceleroYUser	bias offset for accelerometer Y autonull function	1	32bit-float	1	0.0	g	0x0408
FilterCoeffEnAcceleroYUser[]	Accelerometer Y digital low-pass filters coefficients for input samples defined by respectively Filter 1 (order O1= FilterOrderAcceleroYUser): { FilterCoeffEnAcceleroYUser [0],	I	64bit-float table	7	1	1	0x0410
	FilterCoeffEnAcceleroYUser [1],						

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	FilterCoeffEnAcceleroYUser [2],, FilterCoeffEnAcceleroYUser [N=O1]} With N=0: coefficient for En N=1: coefficient for En-1 N=2: coefficient for En-2 N=O1: coefficient for En-O1						
FilterCoeffSnAcceleroYUser[]	Accelerometer Y digital low-pass filters coefficients for ouput samples defined by respectively Filter 1 (order O1= FilterOrderAcceleroYUser): { FilterCoeffSnAcceleroYUser [0], FilterCoeffSnAcceleroYUser [1], FilterCoeffSnAcceleroYUser [2],, FilterCoeffSnAcceleroYUser [N=O1]} With N=0: coefficient for Sn N=1: coefficient for Sn-1 N=2: coefficient for Sn-2	/	64bit-float table	7	/	LSB	0x0448

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	N=O1 : coefficient for Sn-O1						
FilterResonanceAccelero YUser	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of accelerometer Y	I	64bit-float	1	1	LSB	0x0480
FilterBandwidthAcceleroYUser	User digital filter bandwidth @-3dB of accelerometer Y	≤ 200	32bit-float	1	1	LSB	0x0488
FilterOrderAcceleroYUser	Digital filter order of accelerometer Y	≤ 6 and ≥ 0 (=0 means no filtering)	32bit-word	1	1	LSB	0x048C
		Accelero Z					
AutonullAcceleroZUser	bias offset for accelerometer Z autonull function	1	32bit-float	1	0.0	g	0x0508
FilterCoeffEnAcceleroZUser[]	Accelerometer Z digital low-pass filters coefficients for input samples defined by respectively						
	Filter 1 (order O1= FilterOrderAcceleroZUser):	,	64bit-float	7	1	,	0x0510
	{ FilterCoeffEnAcceleroZUser [0],		table				
	FilterCoeffEnAcceleroZUser [1],						
	FilterCoeffEnAcceleroZUser [2],, FilterCoeffEnAcceleroZUser [N=O1]}						

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant

- 29 -

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	With N=0 : coefficient for En N=1 : coefficient for En-1 N=2 : coefficient for En-2						
FilterCoeffSnAcceleroZUser[]	N=O1 : coefficient for En-O1 Accelerometer Z digital low-pass filters coefficients for ouput samples defined by respectively Filter 1 (order O1= FilterOrderAcceleroZUser): { FilterCoeffSnAcceleroZUser [0], FilterCoeffSnAcceleroZUser [1], FilterCoeffSnAcceleroZUser [2],, FilterCoeffSnAcceleroZUser [N=O1]} With N=0 : coefficient for Sn N=1 : coefficient for Sn-1 N=2 : coefficient for Sn-2 N=O1 : coefficient for Sn-O1		64bit-float table	7	/	LSB	0x0548

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur. Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document any be subject to Export Control Regulations of the European Union, USA or other countries.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all releval Export Control Regulations.

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address	
FilterResonanceAcceleroZUser	Resonance frequency gain (M) multiplied by max 23bit signed value (= M x 2 ²²) of accelerometer Z	1	64bit-float	1	1	LSB	0x0580	
FilterBandwidthAcceleroZUser	User digital filter bandwidth @-3dB of accelerometer Z	≤ 200	32bit-float	1	1	LSB	0x0588	
FilterOrderAcceleroZUser	Digital filter order of accelerometer Z	≤ 6 and ≥ 0 (=0 means no filtering)	32bit-word	1	1	LSB	0x058C	
BIT OUT, RS485 & CAN bus configuration								
Rs485BaudRateUser	UART baud rate selection	{9.6k;19.2k;38.4k; 115.2k;230.4k; 460.8k;921.6k}	32bit-word	1	19200	baud	0x0600	
Rs485IdentifierUser	UART MODBUS identifier	[1;247]	32bit-word	1	1	LSB	0x0604	
Rs485FramePeriodUser	RS485 output frame period (in master mode only)	[1;1000]	32bit-word	1	56	ms	0x0608	
CANBaudRateUser	CAN baud rate selection	{125k;250k;500k; 1000k]	32bit-word	1	250000	baud	0x060C	
CANFramePeriodUser	CAN output frame period	[1;1000]	32bit-word	1	1	ms	0x0610	
SynchroEnableUser	BIT_OUT signal synchronization enable (enable=1, disable=0)	[0;1]	32bit-word	1	0	LSB	0x0614	
SynchroEdgeUser	BIT_OUT signal synchronization edge	[0;1]	32bit-word	1	0	LSB	0x0618	

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	(positive=1 or negative=0)						
SynchroEdgeDelayUser	BIT_OUT signal synchronization edge delay	[1;100]	32bit-word	1	1	ms	0x061C
SynchroEventUser	BIT_OUT signal synchronization event (CAN transmission start (1 st byte) =1 or RS485 continuous output frame start (1 st byte)=0)	[0;1]	32bit-word	1	0	LSB	0x0620
CANCmdldentifierUser	CAN command identifier	1	32bit-word	1	0x1FFFD8B0	LSB	0x0624
CANData1IdentifierUser	CAN DATA1 identifier	1	32bit-word	1	0x10FF53D8	LSB	0x0628
CANData2IdentifierUser	CAN DATA2 identifier	1	32bit-word	1	0x10FF54D8	LSB	0x062C
CANData3IdentifierUser	CAN DATA3 identifier	1	32bit-word	1	0x10FF55D8	LSB	0x0630
SbitEnableUser	IMU SBIT enable/disable selection (=1: enable, =0: disable)	[0;1]	32bit-word	1	1	LSB	0x0638
	EEPRO	M data (without CRC)					
MasterModeUser	Master mode selection (=1, enable, =0, disable): means RS485 continuous frame output is sent periodically just after each start-up (eeprom data automatically modifies only when a continuous frame MODBUS request is received in user mode only).	[0; 1]	32bit-word	1	0	LSB	0x0640
CanMasterModeUser	CAN master mode selection: means CAN	[0;7]	32bit-word	1	0	LSB	0x0644

Toute information contenue dans ce document est susceptible d'être soumise aux règles de contrôle des exportations européennes, américaines ou de tout autre pays. Il est de la responsabilité du destinataire de ce document de s'assurer que le transfert ou l'utilisation des données qu'il contient est conforme à toutes les règles de contrôle des exportations en vigueur.

Information contained in this document may be subject to Export Control Regulations of the European Union, USA or other countries. Each recipient of this document is responsible for ensuring that transfer or use of any information contained in this document complies with all relevant

- 32 -

NOT043045InterfaceProductB0

Name	Definition	Range	Туре	Size (in element type size)	Default value	Units	(0xXXXX) EEPROM address
	continuous frame output is sent periodically depending on CanMasterModeUser value (=SEL_TX) just after each start-up.						

7. Calcul du CRC16 MODBUS RTU

La norme MODBUS RTU inclus une vérification d'erreur basée sur la méthode *Cyclical Redundancy Checking (CRC)* appliquée sur les données du message.

Le champ CRC permet de vérifier l'ensemble des données du message. Il est calculé sans prendre en compte les bits de parité de chaque octet du message.

Le champ CRC contient un mot de 16bits implémenté comme deux éléments de 8bits. Le CRC 16bits est ajouté à la fin du message. L'octet de poids faible du CRC 16 bits est d'abord ajouté au message suivi de l'octet de poids fort. L'octet de poids fort du message est donc le dernier octet transmis du message. Le CRC 16 bits est calculé par l'émetteur du message Le récepteur recalcule le CRC 16 bits du message reçu et le compare à la valeur contenue dans le message recu. Si les deux valeurs ne sont pas identiques, une erreur est levée.

Calcul du CRC

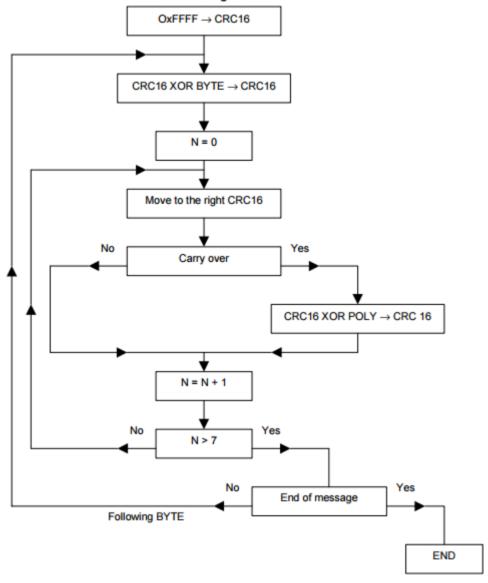
Le calcul du CRC est démarré en chargeant un registre 16 bits à 0xffff.

Ensuite, un processus démarre en appliquant successivement chaque octet du message à la valeur courante du registre. Seulement les 8 bits des données sont utilisées pour générer le CRC. Les bits de start, de stop et de parité ne sont pas appliqués au calcul du CRC.

Pendant la génération du CRC, on exécute un OU exclusif entre chaque octet du message et le contenu du registre de CRC. Ensuite le résultat est décalé vers la droite et le bit de poids fort est mis à 0. Le LSB est alors examiné. Si il est égal à 1, alors on applique un OU exclusif entre le registre du CRC et une valeur prédéfinie. Si le LSB est égal à 0, on ne fait rien

Ce processus est répété jusqu'à ce que 8 décalages aient été effectués. Après les 8 décalages, on applique un OU exclusif sur le prochain octet avec le contenu du registre du CRC et le processus se continue pour 8 nouveau décalage comme décrit ci-dessus.

Le contenu final du registre, est la valeur du CRC 16 bits.


La procédure de génération du CRC 16 bits est la suivante:

- 1. Charger un registre 16-bit avec 0xFFFF. Ce registre est le registre CRC.
- 2. Appliquer un OU exclusive sur le premier octet du message avec l'octet de poids faible du *registre CRC*, et mettre le résultat dans le *registre CRC*.
- 3. Décaler le *registre CRC* à droite d'un bit et mettre un zéro dans le Most Significant Bit. Extraire et examiner le LSB.
- (Si le LSB est égal à 0): Répéter l'étape 3 (autre décalage).
 (Si le LSB est égal à 1): Appliquer un OU exclusive entre le registre CRC et la valeur 0xA001 (1010 0000 0000 0001).
- 5. Répéter les étapes 3 et 4 jusqu'à ce que 8 décalages aient été effectués.
- 6. Répéter les étapes 2 à 5 pour le prochain octet du message et ce jusqu'à la fin du message.
- 7. Le contenu du registre CRC est la valeur du CRC 16 bits.
- 8. L'octet de poids faible du CRC 16bits est placé en premier dans le message et ensuite, l'octet de poids fort est inséré.

Calculation algorithm of the CRC 16

XOR = exclusive or

N = number of information bits

POLY = calculation polynomial of the CRC 16 = 1010 0000 0000 0001

(Generating polynomial = $1 + x^2 + x + 15 + x + 16$) In the CRC 16, the 1st byte transmitted is the least significant one.